Visualizing convolutional neural network for classifying gravitational waves from core-collapse supernovae

Seiya Sasaoka, Naoki Koyama, Diego Dominguez, Yusuke Sakai, Kentaro Somiya, Yuto Omae, Hirotaka Takahashi

研究成果: ジャーナルへの寄稿記事査読

6 被引用数 (Scopus)

抄録

In this study, we employ a convolutional neural network to classify gravitational waves originating from core-collapse supernovae. Training is conducted using spectrograms derived from three-dimensional numerical simulations of waveforms, which are injected onto real noise data from the third observing run of both Advanced LIGO and Advanced Virgo. To gain insights into the decision-making process of the model, we apply class activation mapping techniques to visualize the regions in the input image that are significant for the model's prediction. The class activation maps reveal that the model's predictions predominantly rely on specific features within the input spectrograms, namely, the g-mode and low-frequency modes. The visualization of convolutional neural network models provides interpretability to enhance their reliability and offers guidance for improving detection efficiency.

本文言語英語
論文番号123033
ジャーナルPhysical Review D
108
12
DOI
出版ステータス出版済み - 15 12月 2023

フィンガープリント

「Visualizing convolutional neural network for classifying gravitational waves from core-collapse supernovae」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル