Transferring Deep Convolutional Network Representations from SPECT to Improve PET Cardiac Outcome Prediction

Bryan P. Bednarski, Aakash D. Shanbhag, Ananya Singh, Robert J.H. Miller, Heidi Gransar, Keiichiro Kuronuma, Tali Sharir, Sharmila Dorbala, Marcelo F. Di Carli, Mathews B. Fish, Terrence D. Ruddy, Daniel S. Berman, Damini Dey, Piotr J. Slomka

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

Purpose Cardiac PET, less common than SPECT, is rapidly growing and offers the additional benefit of first-pass absolute myocardial blood flow measurements. However, multicenter cardiac PET databases are not well established. We used multicenter SPECT data to improve PET cardiac risk stratification via a deep learning knowledge transfer mechanism. Methods SPECT and PET patients are followed-up for major adverse cardiac events (MACE): all-cause death, unstable angina, myocardial infarction, or revascularization. SPECT cohort: 20,401 cases (5 sites; 57% male). PET cohort: single-site, split temporally for internal 5-fold cross-validation (n=2,231; 56% male) and simulated prospective testing (n=2,056; 58% male). A convolutional neural network is pretrained on SPECT polar map images to estimate MACE risk. Knowledge transfer is achieved by leveraging trained SPECT model parameters for PET models. Unique PET imaging parameters (e.g. myocardial blood flow reserve) are integrated using ensemble fully connected networks. Methodologies of increasing complexity: PET (vanilla), PET (transfer), PET (transfer+freeze) and clinical baselines: summed stress score (SSS), summed rest score (SRS), summed difference score (SDS), were compared using area under the receiver operating characteristic curve. Results MACE prediction performance in the internal set with transfer learning: PET (transfer+freeze) (0.744) and PET (transfer) (0.743) were significantly higher than PET (vanilla) (0.727), SSS (0.645), SRS (0.620), and SDS (0.607) (all p<0.001). In hold-out testing, PET (transfer+freeze) (0.741) and PET (transfer) (0.732) improved over PET (vanilla) (0.722) (p<0.001, p<0.05), SSS (0.658), SRS (0.612), and SDS (0.613) (all p<0.001). Conclusion We demonstrate a novel methodology for improving cardiac PET MACE prediction via transfer learning from SPECT.

本文言語英語
ホスト出版物のタイトルMedical Imaging 2023
ホスト出版物のサブタイトルImage Processing
編集者Olivier Colliot, Ivana Isgum
出版社SPIE
ISBN(電子版)9781510660335
DOI
出版ステータス出版済み - 2023
外部発表はい
イベントMedical Imaging 2023: Image Processing - San Diego, 米国
継続期間: 19 2月 202323 2月 2023

出版物シリーズ

名前Progress in Biomedical Optics and Imaging - Proceedings of SPIE
12464
ISSN(印刷版)1605-7422

会議

会議Medical Imaging 2023: Image Processing
国/地域米国
CitySan Diego
Period19/02/2323/02/23

フィンガープリント

「Transferring Deep Convolutional Network Representations from SPECT to Improve PET Cardiac Outcome Prediction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル