TY - JOUR
T1 - Sublethal heat treatment promotes epithelial-mesenchymal transition and enhances the malignant potential of hepatocellular carcinoma
AU - Yoshida, Shuhei
AU - Kornek, Miroslaw
AU - Ikenaga, Naoki
AU - Schmelzle, Moritz
AU - Masuzaki, Ryota
AU - Csizmadia, Eva
AU - Wu, Yan
AU - Robson, Simon C.
AU - Schuppan, Detlef
PY - 2013/11
Y1 - 2013/11
N2 - Radiofrequency ablation (RFA) is a potentially curative therapy for hepatocellular carcinoma (HCC). However, incomplete RFA can induce accelerated invasive growth at the periphery. The mechanisms underlying the RFA-induced tumor promotion remain largely unexplored. Three human HCC cell lines were exposed to 45°C-55°C for 10 minutes, simulating the marginal zone of RFA treatment. At 5-12 days post-treatment cell proliferation, parameters of epithelial-mesenchymal transition (EMT), and activation of mitogen-activated protein kinases were analyzed. Livers from patients with viral hepatitis without and with HCC (n=114) were examined to confirm the relevance of altered kinase patterns. In vivo tumorigenic potential of heat-treated versus untreated HCC cells was studied in nude mice. Heating to 55°C killed all HCC cells, whereas 65%-85% of cells survived 48°C-50°C, developing spindle-like morphology and expressing CD133, cytokeratin (CK)7, CK19, procollagen-α1(I), and Snail at day 5 after heat exposure, which returned to baseline at day 12. Heat-exposed HCC cells showed enhanced proliferation and prominent activation of p46-Shc (Src homology and collagen) and downstream extracellular signal-related kinase (Erk)1/2. In patients, Shc expression correlated with malignant potential and overall survival. Blocking Erk1/2 reduced proliferation and EMT-like changes of heat-treated HCC cells. Implantation of heat-exposed HEPG2 cells into nude mice induced significantly larger, more aggressive tumors than untreated cells. Conclusions: Sublethal heat treatment skews HCC cells toward EMT and transforms them to a progenitor-like, highly proliferative cellular phenotype in vitro and in vivo, which is driven significantly by p46Shc-Erk1/2. Suboptimal RFA accelerates HCC growth and spread by transiently inducing an EMT-like, more aggressive cellular phenotype.
AB - Radiofrequency ablation (RFA) is a potentially curative therapy for hepatocellular carcinoma (HCC). However, incomplete RFA can induce accelerated invasive growth at the periphery. The mechanisms underlying the RFA-induced tumor promotion remain largely unexplored. Three human HCC cell lines were exposed to 45°C-55°C for 10 minutes, simulating the marginal zone of RFA treatment. At 5-12 days post-treatment cell proliferation, parameters of epithelial-mesenchymal transition (EMT), and activation of mitogen-activated protein kinases were analyzed. Livers from patients with viral hepatitis without and with HCC (n=114) were examined to confirm the relevance of altered kinase patterns. In vivo tumorigenic potential of heat-treated versus untreated HCC cells was studied in nude mice. Heating to 55°C killed all HCC cells, whereas 65%-85% of cells survived 48°C-50°C, developing spindle-like morphology and expressing CD133, cytokeratin (CK)7, CK19, procollagen-α1(I), and Snail at day 5 after heat exposure, which returned to baseline at day 12. Heat-exposed HCC cells showed enhanced proliferation and prominent activation of p46-Shc (Src homology and collagen) and downstream extracellular signal-related kinase (Erk)1/2. In patients, Shc expression correlated with malignant potential and overall survival. Blocking Erk1/2 reduced proliferation and EMT-like changes of heat-treated HCC cells. Implantation of heat-exposed HEPG2 cells into nude mice induced significantly larger, more aggressive tumors than untreated cells. Conclusions: Sublethal heat treatment skews HCC cells toward EMT and transforms them to a progenitor-like, highly proliferative cellular phenotype in vitro and in vivo, which is driven significantly by p46Shc-Erk1/2. Suboptimal RFA accelerates HCC growth and spread by transiently inducing an EMT-like, more aggressive cellular phenotype.
UR - http://www.scopus.com/inward/record.url?scp=84887018652&partnerID=8YFLogxK
U2 - 10.1002/hep.26526
DO - 10.1002/hep.26526
M3 - Article
C2 - 23729316
AN - SCOPUS:84887018652
SN - 0270-9139
VL - 58
SP - 1667
EP - 1680
JO - Hepatology
JF - Hepatology
IS - 5
ER -