TY - JOUR
T1 - MS785-MS27 Reactive Misfolded/Non-Native Zn-Deficient SOD1 Species Exhibit Cytotoxicity and Adopt Heterozygous Conformations in Motor Neurons
AU - Tokuda, Eiichi
AU - Sakashita, Yume
AU - Tokoro, Naoya
AU - Date, Ayano
AU - Kosuge, Yasuhiro
AU - Miyasaka, Tomohiro
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/6
Y1 - 2024/6
N2 - Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term “misfolding” refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.
AB - Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term “misfolding” refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.
KW - MS785-MS27 antibody cocktail
KW - Zn-deficient SOD1
KW - amyotrophic lateral sclerosis
KW - recombinant proteins
UR - http://www.scopus.com/inward/record.url?scp=85195872495&partnerID=8YFLogxK
U2 - 10.3390/ijms25115603
DO - 10.3390/ijms25115603
M3 - Article
C2 - 38891791
AN - SCOPUS:85195872495
SN - 1661-6596
VL - 25
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 11
M1 - 5603
ER -