Finding Dominant Factor That Affects Crude Birth Rates in Japanese Prefectures

Yukari Shirota, Kenji Yamaguchi

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

We conduct a regression to find a dominant factor that affects crude birth rates in Japan by prefectures. As the traditional regression method, a linear multiple regression is widely used. However, higher accuracy methods with machine learning algorithms have been developed. To find the dominant factor, we use eXtreme Gradient Boosting (XGBoost) and Random Forest which are the decision tree based machine learning algorithms. The results show better accuracies, compared with the traditional linear multiple one. Then, the XGBoost shows that the most dominant factor is the number of marriages, and the second one is the migration rate to the prefecture.

本文言語英語
ホスト出版物のタイトル2020 6th IEEE International Conference on Information Management, ICIM 2020
出版社Institute of Electrical and Electronics Engineers Inc.
ページ73-77
ページ数5
ISBN(電子版)9781728157702
DOI
出版ステータス出版済み - 3月 2020
外部発表はい
イベント6th IEEE International Conference on Information Management, ICIM 2020 - London, 英国
継続期間: 27 3月 202029 3月 2020

出版物シリーズ

名前2020 6th IEEE International Conference on Information Management, ICIM 2020

会議

会議6th IEEE International Conference on Information Management, ICIM 2020
国/地域英国
CityLondon
Period27/03/2029/03/20

フィンガープリント

「Finding Dominant Factor That Affects Crude Birth Rates in Japanese Prefectures」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル