Evaluation of Automatic Adjustment Methods for Voltage Reference to Compensate Dead-Time Distortion Using Machine Learning

Hideki Ayano, Makoto Ohmi, Yuto Omae, Yoshihiro Matsui

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

In many power converters, a compensated voltage reference added to the voltage references to compensate for dead-time distortion is preset at the design stage. However, the compensated reference may deviate from the proper value when semiconductor devices are replaced or when device characteristics change due to the operating environment. Therefore, there are demands for active adjustment of the compensated reference. This paper evaluates and compares the effectiveness of three methods for adjusting the compensated reference using machine learning: (i) a method using the image classification model, (ii) a method using waveform feature-based linear regression model, and (iii) a method using one-dimensional CNN regression model with time series data. It is shown that the method (iii) is more effective than the others.

本文言語英語
ホスト出版物のタイトル2024 27th International Conference on Electrical Machines and Systems, ICEMS 2024
出版社Institute of Electrical and Electronics Engineers Inc.
ページ176-182
ページ数7
ISBN(電子版)9784886864406
DOI
出版ステータス出版済み - 2024
イベント27th International Conference on Electrical Machines and Systems, ICEMS 2024 - Fukuoka, 日本
継続期間: 26 11月 202429 11月 2024

出版物シリーズ

名前2024 27th International Conference on Electrical Machines and Systems, ICEMS 2024

会議

会議27th International Conference on Electrical Machines and Systems, ICEMS 2024
国/地域日本
CityFukuoka
Period26/11/2429/11/24

フィンガープリント

「Evaluation of Automatic Adjustment Methods for Voltage Reference to Compensate Dead-Time Distortion Using Machine Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル