TY - JOUR
T1 - Efficacy of distortion correction on diffusion imaging
T2 - Comparison of FSL eddy and eddy-correct using 30 and 60 directions diffusion encoding
AU - Yamada, Haruyasu
AU - Abe, Osamu
AU - Shizukuishi, Takashi
AU - Kikuta, Junko
AU - Shinozaki, Takahiro
AU - Dezawa, Ko
AU - Nagano, Akira
AU - Matsuda, Masayuki
AU - Haradome, Hiroki
AU - Imamura, Yoshiki
N1 - Publisher Copyright:
©2014 Yamada et al.
PY - 2014/11/18
Y1 - 2014/11/18
N2 - Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, ''eddy-correct'' and the combination of ''eddy'' and ''topup'' in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy-correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy-correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.
AB - Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, ''eddy-correct'' and the combination of ''eddy'' and ''topup'' in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy-correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy-correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.
UR - http://www.scopus.com/inward/record.url?scp=84913534499&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0112411
DO - 10.1371/journal.pone.0112411
M3 - Article
C2 - 25405472
AN - SCOPUS:84913534499
SN - 1932-6203
VL - 9
JO - PLoS ONE
JF - PLoS ONE
IS - 11
M1 - e112411
ER -