抄録
Dicer processes microRNAs (miRs) into active forms in a wide variety of tissues, including the liver. To determine the role of Dicer in liver regeneration, we performed a series of in vivo and in vitro studies in a murine 2/3 hepatectomy model. Dicer was downregulated after 2/3 hepatectomy, and loss of Dicer inhibited liver regeneration associated with decreased cyclin A2 and miR-221, as well as increased levels of the cell cycle inhibitor p27. In vitro, miR-221 inhibited p27 production in primary hepatocytes and increased hepatocyte proliferation. Specific reconstitution of miR-221 in hepatocyte-specific Dicer-null mice inhibited p27 and restored liver regeneration. In wild type mice, targeted inhibition of miR-221 using a cholesterol-conjugated miR- 221 inhibited hepatocyte proliferation after 2/3 hepatectomy. These results identify Dicer production of miR-221 as an essential component of a miRNA-dependent mechanism for suppression of p27 that controls the rate of hepatocyte proliferation after partial hepatectomy. NEW & NOTEWORTHY Our findings demonstrate a direct role for microRNAs in controlling the rate of liver regeneration after injury. By deleting Dicer, an enzyme responsible for processing microRNAs into mature forms, we determined miR-221 is a critical micro- RNA in the physiological process of restoration of liver mass after injury. miR-221 suppresses p27, releasing its inhibitory effects on hepatocyte proliferation. Pharmaceuticals based on miR-221 may be useful to modulate hepatocyte proliferation in the setting of liver injury.
本文言語 | 英語 |
---|---|
ページ(範囲) | G464-G473 |
ジャーナル | American Journal of Physiology - Gastrointestinal and Liver Physiology |
巻 | 312 |
号 | 5 |
DOI | |
出版ステータス | 出版済み - 4 5月 2017 |
外部発表 | はい |