TY - GEN
T1 - Dependence of spin-dependent transport signals on measurement frequency in CoFe/MgO/ n+-Si junctions
AU - Inokuchi, T.
AU - Ishikawa, M.
AU - Sugiyama, H.
AU - Saito, Y.
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/7/14
Y1 - 2015/7/14
N2 - Highly efficient electrical spin injection and detection between ferromagnetic electrodes and semiconductors are important technologies for semiconductor-based spintronic devices, such as spin-MOSFETs. In an ideal system, the efficiency of spin injection and detection in a ferromagnetic metal/tunnel barrier/semiconductor junction depends on the spin polarization of the ferromagnetic metal, the spin filtering efficiency of the tunnel barrier, and the conductivity matching condition. However, other complex mechanisms affect spin-dependent transport in real junctions. It has been pointed out that a sequential tunneling process through localized states at an interface of a junction affect an amplitude and a width of Hanle signal so that the calculated spin lifetime are affected by effects of localized states [1-4]. Recently, the effects of these localized states were directly investigated by inelastic electron tunneling spectroscopy (IETS) [5-7]. The purpose of this study is to reveal relationship between the localized states and the spin-dependent transport properties in more detail by means of dependence of the differential conductance and IET signals on the measurement frequency.
AB - Highly efficient electrical spin injection and detection between ferromagnetic electrodes and semiconductors are important technologies for semiconductor-based spintronic devices, such as spin-MOSFETs. In an ideal system, the efficiency of spin injection and detection in a ferromagnetic metal/tunnel barrier/semiconductor junction depends on the spin polarization of the ferromagnetic metal, the spin filtering efficiency of the tunnel barrier, and the conductivity matching condition. However, other complex mechanisms affect spin-dependent transport in real junctions. It has been pointed out that a sequential tunneling process through localized states at an interface of a junction affect an amplitude and a width of Hanle signal so that the calculated spin lifetime are affected by effects of localized states [1-4]. Recently, the effects of these localized states were directly investigated by inelastic electron tunneling spectroscopy (IETS) [5-7]. The purpose of this study is to reveal relationship between the localized states and the spin-dependent transport properties in more detail by means of dependence of the differential conductance and IET signals on the measurement frequency.
UR - http://www.scopus.com/inward/record.url?scp=84942465737&partnerID=8YFLogxK
U2 - 10.1109/INTMAG.2015.7157504
DO - 10.1109/INTMAG.2015.7157504
M3 - Conference contribution
AN - SCOPUS:84942465737
T3 - 2015 IEEE International Magnetics Conference, INTERMAG 2015
BT - 2015 IEEE International Magnetics Conference, INTERMAG 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2015 IEEE International Magnetics Conference, INTERMAG 2015
Y2 - 11 May 2015 through 15 May 2015
ER -