Automatic fascia extraction and classification for measurement of muscle layer thickness

Tsubasa Imaizumi, Norihiro Koizumi, Ryosuke Kondo, Yu Nishiyama, Naoki Matsumoto

研究成果: 書籍の章/レポート/Proceedings会議への寄与査読

抄録

In this report, we proposed a method of discriminating of fascia using Histograms of Oriented Gradients (HOG) and Support Vector Machine (SVM) in ultrasound images. In modern society, aging is progressing due to medical development. Along with that, the decline of muscle due to aging is regarded as a serious problem. To cope with this problem, we proposed a method of automatic fascia classification to visualize muscle thickness. Our method use SVM based on the texture of ultrasound images. In addition to this method, our method achieves about 90% Accuracy and Recall by considering that the fascia is a continuous tissue. Experimental results show the effectiveness of our proposed automatic fascia extraction method.

本文言語英語
ホスト出版物のタイトル2018 15th International Conference on Ubiquitous Robots, UR 2018
出版社Institute of Electrical and Electronics Engineers Inc.
ページ493-496
ページ数4
ISBN(印刷版)9781538663349
DOI
出版ステータス出版済み - 20 8月 2018
イベント15th International Conference on Ubiquitous Robots, UR 2018 - Honolulu, 米国
継続期間: 27 6月 201830 6月 2018

出版物シリーズ

名前2018 15th International Conference on Ubiquitous Robots, UR 2018

会議

会議15th International Conference on Ubiquitous Robots, UR 2018
国/地域米国
CityHonolulu
Period27/06/1830/06/18

フィンガープリント

「Automatic fascia extraction and classification for measurement of muscle layer thickness」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル