TY - JOUR
T1 - An artificial neural network−pharmacokinetic model and its interpretation using Shapley additive explanations
AU - Ogami, Chika
AU - Tsuji, Yasuhiro
AU - Seki, Hiroto
AU - Kawano, Hideaki
AU - To, Hideto
AU - Matsumoto, Yoshiaki
AU - Hosono, Hiroyuki
N1 - Publisher Copyright:
© 2021 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics
PY - 2021/7
Y1 - 2021/7
N2 - We developed a method to apply artificial neural networks (ANNs) for predicting time-series pharmacokinetics (PKs), and an interpretable the ANN-PK model, which can explain the evidence of prediction by applying Shapley additive explanations (SHAP). A previous population PK (PopPK) model of cyclosporin A was used as the comparison model. The patients’ data were used for the ANN-PK model input, and the output by ANN was the clearance (CL). The estimated CL value from the ANN were substituted into the one-compartment with one-order absorption model, the concentrations were calculated, and the parameters of ANN were updated by the back-propagation method. Kernel SHAP was applied to the trained model and the SHAP value of each input was calculated. The root mean squared error for the PopPK model and the ANN-PK model were 41.1 and 31.0 ng/ml, respectively. The goodness of fit plots for the ANN-PK model represented more convergence to y = x compared with that for the PopPK model, with good model performance for the ANN-PK model. The most influential factors on CL output were age and body weight from the evaluation using Kernel SHAP, and these factors were incorporated into the PopPK model as the significant covariates of CL. The ANN-PK model could handle time-series data and showed higher prediction accuracy then the conventional PopPK model, and the scientific validity for the model could be evaluated by applying SHAP. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? A black-box property of an artificial neural network (ANN) decreases the scientific confidence of the model, and making it difficult to utilize the ANN in the medical field. Moreover, difficulty in handling the time-series data is a significant problem for applying the ANN for pharmacometrics study. WHAT QUESTION DID THIS STUDY ADDRESS? How can we apply the ANN for predicting the time-series pharmacokinetics (PKs), and confirm the scientific validity of the ANN model? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? Using the ANN in combination with a conventional compartment (ANN-PK) model enabled to handle the time-series PK data, and the predicting performance of the model was higher than that of the population PK model. Furthermore, we could evaluate the scientific validity of the ANN model by applying the Shapley additive explanations. HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/OR THERAPEUTICS? We expect that our study will contribute to develop the interpretable ANN model, which can predict the time-series PKs, drug efficacies, and side effects with high prediction performance.
AB - We developed a method to apply artificial neural networks (ANNs) for predicting time-series pharmacokinetics (PKs), and an interpretable the ANN-PK model, which can explain the evidence of prediction by applying Shapley additive explanations (SHAP). A previous population PK (PopPK) model of cyclosporin A was used as the comparison model. The patients’ data were used for the ANN-PK model input, and the output by ANN was the clearance (CL). The estimated CL value from the ANN were substituted into the one-compartment with one-order absorption model, the concentrations were calculated, and the parameters of ANN were updated by the back-propagation method. Kernel SHAP was applied to the trained model and the SHAP value of each input was calculated. The root mean squared error for the PopPK model and the ANN-PK model were 41.1 and 31.0 ng/ml, respectively. The goodness of fit plots for the ANN-PK model represented more convergence to y = x compared with that for the PopPK model, with good model performance for the ANN-PK model. The most influential factors on CL output were age and body weight from the evaluation using Kernel SHAP, and these factors were incorporated into the PopPK model as the significant covariates of CL. The ANN-PK model could handle time-series data and showed higher prediction accuracy then the conventional PopPK model, and the scientific validity for the model could be evaluated by applying SHAP. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? A black-box property of an artificial neural network (ANN) decreases the scientific confidence of the model, and making it difficult to utilize the ANN in the medical field. Moreover, difficulty in handling the time-series data is a significant problem for applying the ANN for pharmacometrics study. WHAT QUESTION DID THIS STUDY ADDRESS? How can we apply the ANN for predicting the time-series pharmacokinetics (PKs), and confirm the scientific validity of the ANN model? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? Using the ANN in combination with a conventional compartment (ANN-PK) model enabled to handle the time-series PK data, and the predicting performance of the model was higher than that of the population PK model. Furthermore, we could evaluate the scientific validity of the ANN model by applying the Shapley additive explanations. HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, AND/OR THERAPEUTICS? We expect that our study will contribute to develop the interpretable ANN model, which can predict the time-series PKs, drug efficacies, and side effects with high prediction performance.
UR - http://www.scopus.com/inward/record.url?scp=85106594489&partnerID=8YFLogxK
U2 - 10.1002/psp4.12643
DO - 10.1002/psp4.12643
M3 - Article
C2 - 33955705
AN - SCOPUS:85106594489
SN - 2163-8306
VL - 10
SP - 760
EP - 768
JO - CPT: Pharmacometrics and Systems Pharmacology
JF - CPT: Pharmacometrics and Systems Pharmacology
IS - 7
ER -