TY - JOUR
T1 - UV-pre-treated and protein-adsorbed titanium implants exhibit enhanced osteoconductivity
AU - Sugita, Yoshihiko
AU - Saruta, Juri
AU - Taniyama, Takashi
AU - Kitajima, Hiroaki
AU - Hirota, Makoto
AU - Ikeda, Takayuki
AU - Ogawa, Takahiro
N1 - Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2020/6/2
Y1 - 2020/6/2
N2 - Titanium materials are essential treatment modalities in the medical field and serve as a tissue engineering scaffold and coating material for medical devices. Thus, there is a significant demand to improve the bioactivity of titanium for therapeutic and experimental purposes. We showed that ultraviolet light (UV)-pre-treatment changed the protein-adsorption ability and subsequent osteoconductivity of titanium. Fibronectin (FN) adsorption on UV-treated titanium was 20% and 30% greater after 1-min and 1-h incubation, respectively, than that of control titanium. After 3-h incubation, FN adsorption on UV-treated titanium remained 30% higher than that on the control. Osteoblasts were cultured on titanium disks after 1-h FN adsorption with or without UV-pre-treatment and on titanium disks without FN adsorption. The number of attached osteoblasts during the early stage of culture was 80% greater on UV-treated and FN-adsorbed (UV/FN) titanium than on FN-adsorbed (FN) titanium; osteoblasts attachment on UV/FN titanium was 2.6-and 2.1-fold greater than that on control-and UV-treated titanium, respectively. The alkaline phosphatase activity of osteoblasts on UV/FN titanium was increased 1.8-, 1.8-, and 2.4-fold compared with that on FN-adsorbed, UV-treated, and control titanium, respectively. The UV/FN implants exhibited 25% and 150% greater in vivo biomechanical strength of bone integration than the FN-and control implants, respectively. Bone morphogenetic protein-2 (BMP-2) adsorption on UV-treated titanium was 4.5-fold greater than that on control titanium after 1-min incubation, resulting in a 4-fold increase in osteoblast attachment. Thus, UV-pre-treatment of titanium accelerated its protein adsorptivity and osteoconductivity, providing a novel strategy for enhancing its bioactivity.
AB - Titanium materials are essential treatment modalities in the medical field and serve as a tissue engineering scaffold and coating material for medical devices. Thus, there is a significant demand to improve the bioactivity of titanium for therapeutic and experimental purposes. We showed that ultraviolet light (UV)-pre-treatment changed the protein-adsorption ability and subsequent osteoconductivity of titanium. Fibronectin (FN) adsorption on UV-treated titanium was 20% and 30% greater after 1-min and 1-h incubation, respectively, than that of control titanium. After 3-h incubation, FN adsorption on UV-treated titanium remained 30% higher than that on the control. Osteoblasts were cultured on titanium disks after 1-h FN adsorption with or without UV-pre-treatment and on titanium disks without FN adsorption. The number of attached osteoblasts during the early stage of culture was 80% greater on UV-treated and FN-adsorbed (UV/FN) titanium than on FN-adsorbed (FN) titanium; osteoblasts attachment on UV/FN titanium was 2.6-and 2.1-fold greater than that on control-and UV-treated titanium, respectively. The alkaline phosphatase activity of osteoblasts on UV/FN titanium was increased 1.8-, 1.8-, and 2.4-fold compared with that on FN-adsorbed, UV-treated, and control titanium, respectively. The UV/FN implants exhibited 25% and 150% greater in vivo biomechanical strength of bone integration than the FN-and control implants, respectively. Bone morphogenetic protein-2 (BMP-2) adsorption on UV-treated titanium was 4.5-fold greater than that on control titanium after 1-min incubation, resulting in a 4-fold increase in osteoblast attachment. Thus, UV-pre-treatment of titanium accelerated its protein adsorptivity and osteoconductivity, providing a novel strategy for enhancing its bioactivity.
KW - Fibronectin
KW - Mechanical anchorage
KW - Morphogenetic protein-2
KW - Osteoblast
KW - Osteoconductivity
KW - Titanium implants
KW - UV-photofunctionalization
UR - http://www.scopus.com/inward/record.url?scp=85086686312&partnerID=8YFLogxK
U2 - 10.3390/ijms21124194
DO - 10.3390/ijms21124194
M3 - Article
C2 - 32545509
AN - SCOPUS:85086686312
SN - 1661-6596
VL - 21
SP - 1
EP - 17
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
IS - 12
M1 - 4194
ER -