Ultra-high-efficient Writing in Voltage-Control Spintronics Memory(VoCSM); The Most Promising Embedded Memory for Deep Learning

Y. Ohsawa, H. Yoda, N. Shimomura, S. Shirotori, S. Fujita, K. Koi, B. Altansargai, S. Oikawa, M. Shimizu, Y. Kato, T. Inokuchi, H. Sugiyama, M. Ishikawa, T. Ajay, K. Ikegami, S. Takaya, A. Kurobe

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Our new proposal of voltage-control spintronics memory (VoCSM) in which spin-orbit torque (SOT) in conjunction with the voltage-control-magnetic-anisotropy (VCMA) effect works as the writing principle showed small switching current of 37 μ A for about 350 KBT switching energy. This indicates VoCSM's writing efficiency is so high that VoCSM would be applicable for deep learning (DL) memories requiring ultra-low energy consumption.

Original languageEnglish
Title of host publication2018 IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages214-216
Number of pages3
ISBN (Print)9781538637111
DOIs
Publication statusPublished - 26 Jul 2018
Externally publishedYes
Event2nd IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2018 - Kobe, Japan
Duration: 13 Mar 201816 Mar 2018

Publication series

Name2018 IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2018 - Proceedings

Conference

Conference2nd IEEE Electron Devices Technology and Manufacturing Conference, EDTM 2018
Country/TerritoryJapan
CityKobe
Period13/03/1816/03/18

Keywords

  • MRAM
  • VCMA and SOT
  • VoCSM

Fingerprint

Dive into the research topics of 'Ultra-high-efficient Writing in Voltage-Control Spintronics Memory(VoCSM); The Most Promising Embedded Memory for Deep Learning'. Together they form a unique fingerprint.

Cite this