Ultra-high-efficiency writing in voltage-control spintronics memory (VoCSM): The most promising embedded memory for deep learning

Y. Ohsawa, H. Yoda, N. Shimomura, S. Shirotori, S. Fujita, K. Koi, A. Buyandalai, S. Oikawa, M. Shimizu, Y. Kato, T. Inokuchi, H. Sugiyama, M. Ishikawa, K. Ikegami, S. Takaya, A. Kurobe

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Our new proposal of voltage-control spintronics memory (VoCSM) in which spin-orbit torque in conjunction with the voltage-control-magnetic-anisotropy effect works as the writing principle showed small switching current of 37 μA for about 350 KBT switching energy. This indicates VoCSM's writing efficiency is so high that VoCSM would be applicable for deep learning memories requiring ultra-low power consumption.

Original languageEnglish
Article number8531691
Pages (from-to)1238-1243
Number of pages6
JournalIEEE Journal of the Electron Devices Society
Volume6
DOIs
Publication statusPublished - 2018
Externally publishedYes

Keywords

  • learning (artificial intelligence)
  • magnetic devices
  • Magnetic memory
  • magnetic tunneling
  • Nanopatterning
  • nonvolatile memory

Fingerprint

Dive into the research topics of 'Ultra-high-efficiency writing in voltage-control spintronics memory (VoCSM): The most promising embedded memory for deep learning'. Together they form a unique fingerprint.

Cite this