Abstract
Visualization of the collisional merging formation process of field-reversed configuration (FRC) has been attempted. In the collisional merging formation process, two initial FRC-like plasmoids are accelerated toward each other by a magnetic pressure gradient. The relative speed of the collision reaches several times the typical ion sonic speed and Alfvénic speed. The magnetic structure of the initial-FRCs is disrupted in the collision process, but the FRC-like magnetic structure is reformed in ∼30 μs after the collision. Magnetic reconnection should occur in this process; however, general theoretical models in magnetohydrodynamics approximation cannot be applied to this process because of the high-beta nature of FRC and super-Alfvénic/sonic relative speed. In this work, the spectroscopic observation of the collisional merging FRC formation was conducted to evaluate the timescale and geometry of merging. A slight amount of tracer element (e.g., helium) was mixed into one of two initial-FRCs. Mixing of the tracer did not cause serious adverse effects on the performance of the initial-FRC in the collision and merging processes. The collision and merging processes were visualized successfully and observed using a fast-framing camera with a bandpass filter. The timescale of merging and the outflow speed in the collisional merging process of FRCs were optically evaluated for the first time.
Original language | English |
---|---|
Article number | 103526 |
Journal | Review of Scientific Instruments |
Volume | 93 |
Issue number | 10 |
DOIs | |
Publication status | Published - 1 Oct 2022 |