Scar formation and lack of regeneration in adult and neonatal liver after stromal injury

Ryota Masuzaki, Sophia R. Zhao, Eva Csizmadia, Ioannis Yannas, Seth J. Karp

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Known as a uniquely regenerative tissue, the liver shows a remarkable capacity to heal without scarring after many types of acute injury. In contrast, during chronic liver disease, the liver responds with fibrosis, which can progress to cirrhosis and ultimately liver failure. The cause of this shift from a nonfibrotic to a fibrotic response is unknown. We hypothesized that stromal injury is a key event that prevents restoration of normal liver architecture. To test this, we developed a model of stromal injury using a surgical incision through the normal liver in adult and neonatal mice. This injury produces minimal cell death but locally complete stromal (extracellular matrix) disruption. The adult liver responds with inflammation and stellate cell activation, culminating in fibrosis characterized by collagen deposition. This sequence of events is remarkably similar to the fibrotic response leading to cirrhosis. Studies in neonates reveal a similar fibrotic response to a stromal injury. These findings suggest that extracellular matrix disruption leads not to regeneration but rather to scar, similar to other mammalian organs. These findings may shed light on the pathogenesis of chronic liver disease, and suggest therapeutic strategies.

Original languageEnglish
Pages (from-to)122-130
Number of pages9
JournalWound Repair and Regeneration
Volume21
Issue number1
DOIs
Publication statusPublished - Jan 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Scar formation and lack of regeneration in adult and neonatal liver after stromal injury'. Together they form a unique fingerprint.

Cite this