Regeneration of Two-Walled Infrabony Periodontal Defects in Swine After Buccal Fat Pad-Derived Dedifferentiated Fat Cell Autologous Transplantation

Daisuke Akita, Naoki Tsukimura, Tomohiko Kazama, Rie Takahashi, Yoshiki Taniguchi, Jin Inoue, Ayana Suzuki, Nodoka Tanabe, Keisuke Seki, Yoshinori Arai, Masatake Asano, Shuichi Sato, Yoshiyuki Hagiwara, Koichiro Kano, Masaki Honda, Taro Matsumoto

Research output: Contribution to journalArticlepeer-review

Abstract

Mature adipocyte-derived dedifferentiated fat (DFAT) cells show proliferative capabilities and multipotency. Given that the buccal fat pad (BFP) serves as a readily available resource for DFAT cell isolation, BFP-derived DFAT (BFP-DFAT) cells are a promising candidate in orofacial tissue engineering. In this research, we assessed the regenerative capacity of the periodontium through autologous BFP-DFAT cell transplantation in adult swine (micro-minipigs; MMPs). The BFP-DFAT cells were transplanted into inflammation-inducing two-walled infrabony periodontal defects located on the mesial of the second mandibular premolar (n = 6). Twelve weeks post-transplantation, a remarkable attachment gain was noted in the DFAT group, based on probing depths and clinical attachment levels. Histological and immunohistochemical analyses indicated new continuous cellular cementum and alveolar bone formation within the created infrabony defect. Well-organized periodontal ligament-like fibers were embedded between newly formed cementum and the alveolar bone. Histometric analysis demonstrated that the DFAT group had a 2.2-fold increase in new alveolar bone length and a 2.2-fold enhancement in vascularization than those in the control group. Except for minor inflammation in the lungs, no teratomas were detected in the recipient MMPs. BFP-DFAT cells significantly enhanced periodontal tissue regeneration, thus representing an optimal source for tissue engineering applications in dentistry.

Original languageEnglish
Article number604
JournalBiomolecules
Volume15
Issue number4
DOIs
Publication statusPublished - Apr 2025

Keywords

  • dedifferentiated fat cells (DFAT cells)
  • periodontal tissue regeneration
  • transplantation
  • two-walled infrabony periodontal defect

Fingerprint

Dive into the research topics of 'Regeneration of Two-Walled Infrabony Periodontal Defects in Swine After Buccal Fat Pad-Derived Dedifferentiated Fat Cell Autologous Transplantation'. Together they form a unique fingerprint.

Cite this