Prolyl isomerase Pin1 promotes extracellular matrix production in hepatic stellate cells through regulating formation of the Smad3-TAZ complex

Shunya Aoyama, Yuri Kido, Mayu Kanamoto, Miki Naito, Mikako Nakanishi, Machi Kanna, Takeshi Yamamotoya, Tomoichiro Asano, Yusuke Nakatsu

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

Hepatic stellate cells (HSCs) produce extracellular matrixes (ECMs), such as collagen and fibronectin, in response to stimulation with transforming growth factor β (TGFβ). The massive ECM accumulation in the liver due to HSCs causes fibrosis which eventually leads to hepatic cirrhosis and hepatoma development. However, details of the mechanisms underlying continuous HSC activation are as yet poorly understood. We thus attempted to elucidate the role of Pin1, one of the prolyl isomerases, in the underlying mechanism(s), using the human HSC line LX-2. Treatment with Pin1 siRNAs markedly alleviated the TGFβ-induced expressions of ECM components such as collagen 1a1/2, smooth muscle actin and fibronectin at both the mRNA and the protein level. Pin1 inhibitors also decreased the expressions of fibrotic markers. In addition, it was revealed that Pin1 associates with Smad2/3/4, and that four Ser/Thr-Pro motifs in the linker domain of Smad3 are essential for binding with Pin1. Pin1 significantly regulated Smad-binding element transcriptional activity without affecting Smad3 phosphorylations or translocation. Importantly, both Yes-associated protein (YAP) and WW domain-containing transcription regulator (TAZ) also participate in ECM induction, and upregulate Smad3 activity rather than TEA domain transcriptional factor transcriptional activity. Although Smad3 interacts with both TAZ and YAP, Pin1 facilitates the Smad3 association with TAZ, but not that with YAP. In conclusion, Pin1 plays pivotal roles in ECM component productions in HSCs through regulation of the interaction between TAZ and Smad3, and Pin1 inhibitors may have the potential to ameliorate fibrotic diseases.

Original languageEnglish
Article number113544
JournalExperimental Cell Research
Volume425
Issue number2
DOIs
Publication statusPublished - 15 Apr 2023
Externally publishedYes

Keywords

  • Fibrosis
  • Hepatic stellate cells
  • Pin1
  • Smad3
  • TAZ

Fingerprint

Dive into the research topics of 'Prolyl isomerase Pin1 promotes extracellular matrix production in hepatic stellate cells through regulating formation of the Smad3-TAZ complex'. Together they form a unique fingerprint.

Cite this