Abstract
Pin1 is one member of a group consisting of three prolyl isomerases. Pin1 interacts with the motif containing phospho-Ser/Thr-Pro of substrates and enhances cis-trans isomerization of peptide bonds, thereby controlling the functions of these substrates. Importantly, the Pin1 expression level is highly upregulated in most cancer cells and correlates with malignant properties, and thereby with poor outcomes. In addition, Pin1 was revealed to promote the functions of multiple oncogenes and to abrogate tumor suppressors. Accordingly, Pin1 is well recognized as a master regulator of malignant processes. Recent studies have shown that Pin1 also binds to a variety of metabolic regulators, such as AMP-activated protein kinase, acetyl CoA carboxylase and pyruvate kinase2, indicating Pin1 to have major impacts on lipid and glucose metabolism in cancer cells. In this review, we focus on the roles of Pin1 in metabolic reprogramming, such as “Warburg effects”, of cancer cells. Our aim is to introduce these important roles of Pin1, as well as to present evidence supporting the possibility of Pin1 inhibition as a novel anti-cancer strategy.
Original language | English |
---|---|
Pages (from-to) | 106-114 |
Number of pages | 9 |
Journal | Cancer Letters |
Volume | 470 |
DOIs | |
Publication status | Published - 1 Feb 2020 |
Externally published | Yes |
Keywords
- Acetyl CoA carboxylase
- AMP-Activated kinase (AMPK)
- HIF1
- Pin1
- Pyruvate kinase M2
- Warburg effect