TY - JOUR
T1 - Prolyl isomerase Pin1 binds to and stabilizes acetyl CoA carboxylase 1 protein, thereby supporting cancer cell proliferation
AU - Ueda, Koji
AU - Nakatsu, Yusuke
AU - Yamamotoya, Takeshi
AU - Ono, Hiraku
AU - Inoue, Yuki
AU - Inoue, Masa Ki
AU - Mizuno, Yu
AU - Matsunaga, Yasuka
AU - Kushiyama, Akifumi
AU - Sakoda, Hideyuki
AU - Fujishiro, Midori
AU - Takahashi, Shin Ichiro
AU - Matsubara, Akio
AU - Asano, Tomoichiro
N1 - Publisher Copyright:
© Ueda et al.
PY - 2019/2/1
Y1 - 2019/2/1
N2 - The prolyl isomerase Pin1 expression level is reportedly increased in most malignant tissues and correlates with poor outcomes. On the other hand, acetyl CoA carboxylase 1 (ACC1), the rate limiting enzyme of lipogenesis is also abundantly expressed in cancer cells, to satisfy the demand for the fatty acids (FAs) needed for rapid cell proliferation. We found Pin1 expression levels to correlate positively with ACC1 levels in human prostate cancers, and we focused on the relationship between Pin1 and ACC1. Notably, it was demonstrated that Pin1 associates with ACC1 but not with acetyl CoA carboxylase 2 (ACC2) in the overexpression system as well as endogenously in the prostate cancer cell line DU145. This association is mediated by the WW domain in the Pin1 and C-terminal domains of ACC1. Interestingly, Pin1 deficiency or treatment with Pin1 siRNA or the inhibitor juglone markedly reduced ACC1 protein expression without affecting its mRNA level, while Pin1 overexpression increased the ACC1 protein level. In addition, chloroquine treatment restored the levels of ACC1 protein reduced by Pin1 siRNA treatment, indicating that Pin1 suppressed ACC1 degradation through the lysosomal pathway. In brief, we have concluded that Pin1 leads to the stabilization of and increases in ACC1. Therefore, it is likely that the growth-enhancing effect of Pin1 in cancer cells is mediated at least partially by the stabilization of ACC1 protein, corresponding to the well-known potential of Pin1 inhibitors as anti-cancer drugs.
AB - The prolyl isomerase Pin1 expression level is reportedly increased in most malignant tissues and correlates with poor outcomes. On the other hand, acetyl CoA carboxylase 1 (ACC1), the rate limiting enzyme of lipogenesis is also abundantly expressed in cancer cells, to satisfy the demand for the fatty acids (FAs) needed for rapid cell proliferation. We found Pin1 expression levels to correlate positively with ACC1 levels in human prostate cancers, and we focused on the relationship between Pin1 and ACC1. Notably, it was demonstrated that Pin1 associates with ACC1 but not with acetyl CoA carboxylase 2 (ACC2) in the overexpression system as well as endogenously in the prostate cancer cell line DU145. This association is mediated by the WW domain in the Pin1 and C-terminal domains of ACC1. Interestingly, Pin1 deficiency or treatment with Pin1 siRNA or the inhibitor juglone markedly reduced ACC1 protein expression without affecting its mRNA level, while Pin1 overexpression increased the ACC1 protein level. In addition, chloroquine treatment restored the levels of ACC1 protein reduced by Pin1 siRNA treatment, indicating that Pin1 suppressed ACC1 degradation through the lysosomal pathway. In brief, we have concluded that Pin1 leads to the stabilization of and increases in ACC1. Therefore, it is likely that the growth-enhancing effect of Pin1 in cancer cells is mediated at least partially by the stabilization of ACC1 protein, corresponding to the well-known potential of Pin1 inhibitors as anti-cancer drugs.
KW - ACC1
KW - Cancer metabolism
KW - Pin1
UR - http://www.scopus.com/inward/record.url?scp=85062389116&partnerID=8YFLogxK
U2 - 10.18632/oncotarget.26691
DO - 10.18632/oncotarget.26691
M3 - Article
C2 - 30899433
AN - SCOPUS:85062389116
SN - 1949-2553
VL - 10
SP - 1637
EP - 1648
JO - Oncotarget
JF - Oncotarget
IS - 17
ER -