Abstract
Corneal alkali burns are a serious clinical problem that often leads to permanent visual impairment. In this process, transforming growth factor (Tgf)-Β1 is upregulated and involved in the response to corneal injury and the process of corneal stromal scarring. To develop an efficient compound to inhibit Tgf-Β1 in the cornea, we designed GB1201, a pyrrole-imidazole (PI) polyamide targeting rat Tgf-Β1 gene promoter to the activator protein-1 (AP-1) binding site. GB1201 showed a high binding affinity to the target DNA sequence in the gel mobility shift and Biacore assays. GB1201 significantly inhibited the rat Tgf-Β1 gene promoter activity in HEK (human embryonic kidney) 293 cells in a concentration-dependent manner. Topically administrated GB1201 was distributed immediately to the nuclei of all cell layers of the cornea and remained for 24 hours. A corneal alkali burn model in rats was used to evaluate the therapeutic efficacy of GB1201. GB1201 suppressed the upregulation of Tgf-Β1 in the burned cornea, both in the mRNA and protein levels. Moreover, daily treatment with GB1201 for a week significantly improved the corneal tissue wound healing, reduced corneal stromal scarring, and prevented corneal haze formation. Our data suggest that PI polyamide may open new opportunities for therapeutic intervention in the treatment of chemically burned corneas.
Original language | English |
---|---|
Pages (from-to) | 519-527 |
Number of pages | 9 |
Journal | Molecular Therapy |
Volume | 18 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 2010 |