TY - JOUR
T1 - Paralogs of common carp granulocyte colony-stigmulating factor (G-CSF) have different functions regarding development traffickingand activation of neutrophils
AU - Katakura, Fumihiko
AU - Nishiya, Kohei
AU - Wentzel, Annelieke S.
AU - Hino, Erika
AU - Miyamae, Jiro
AU - Okano, Masaharu
AU - Wiegertjes, Geert F.
AU - Moritomo, Tadaaki
N1 - Publisher Copyright:
© 2019 Frew.
PY - 2019
Y1 - 2019
N2 - Mammalian granulocyte colony-stimulating factor (G-CSF; CSF3) is a primary cytokine that promotes the development, mobilization, and activation of neutrophils and their precursors. Teleosts have been reported to possess two paralogs as a likely result of the teleost-wide whole genome duplication (WGD) event, but functional divergence of G-CSF paralogs remains poorly understood. Common carp are an allotetraploid species owing to an additional WGD event in the carp lineage and here, we report on genomic synteny, sequence similarity, and phylogeny of four common carp G-CSF paralogs (g-csfa1 and g-csfa2; g-csfb1 and g-csfb2). G-csfa1 and g-csfa2 show differential and relatively high gene expression levels, while g-csfb1 and g-csfb2 show low basal gene expression levels in most tissues. All paralogs are expressed higher in macrophages than in other leukocyte sub-types and are highly up-regulated by treatment of macrophages with mitogens. Recombinant G-CSFa1 and G-CSFb1 both promoted the proliferation of kidney hematopoietic cells, while only G-CSFb1 induced the differentiation of kidney cells along the neutrophil-lineage. Colony-forming unit assays revealed that G-CSFb1 alone stimulates the formation of CFU-G colonies from head- A nd trunk-kidney whereas the combination of G-CSFa1 and G-CSFb1 stimulates the formation of both CFU-G and CFU-GM colonies. Recombinant G-CSFa1 and G-CSFb1 also exhibit chemotactic activity against kidney neutrophils and up-regulation of cxcr1 mRNA expression was highest in neutrophils after G-CSFb1 stimulation. Furthermore, G-CSFb1 more than G-CSFa1 induced priming of kidney neutrophils through up-regulation of a NADPH-oxidase component p47phox. In vivo administration of G-CSF paralogs increased the number of circulating blood neutrophils of carp. Our findings demonstrate that gene duplications in teleosts can lead to functional divergence between paralogs and shed light on the sub-functionalization of G-CSF paralogs in cyprinid fish.
AB - Mammalian granulocyte colony-stimulating factor (G-CSF; CSF3) is a primary cytokine that promotes the development, mobilization, and activation of neutrophils and their precursors. Teleosts have been reported to possess two paralogs as a likely result of the teleost-wide whole genome duplication (WGD) event, but functional divergence of G-CSF paralogs remains poorly understood. Common carp are an allotetraploid species owing to an additional WGD event in the carp lineage and here, we report on genomic synteny, sequence similarity, and phylogeny of four common carp G-CSF paralogs (g-csfa1 and g-csfa2; g-csfb1 and g-csfb2). G-csfa1 and g-csfa2 show differential and relatively high gene expression levels, while g-csfb1 and g-csfb2 show low basal gene expression levels in most tissues. All paralogs are expressed higher in macrophages than in other leukocyte sub-types and are highly up-regulated by treatment of macrophages with mitogens. Recombinant G-CSFa1 and G-CSFb1 both promoted the proliferation of kidney hematopoietic cells, while only G-CSFb1 induced the differentiation of kidney cells along the neutrophil-lineage. Colony-forming unit assays revealed that G-CSFb1 alone stimulates the formation of CFU-G colonies from head- A nd trunk-kidney whereas the combination of G-CSFa1 and G-CSFb1 stimulates the formation of both CFU-G and CFU-GM colonies. Recombinant G-CSFa1 and G-CSFb1 also exhibit chemotactic activity against kidney neutrophils and up-regulation of cxcr1 mRNA expression was highest in neutrophils after G-CSFb1 stimulation. Furthermore, G-CSFb1 more than G-CSFa1 induced priming of kidney neutrophils through up-regulation of a NADPH-oxidase component p47phox. In vivo administration of G-CSF paralogs increased the number of circulating blood neutrophils of carp. Our findings demonstrate that gene duplications in teleosts can lead to functional divergence between paralogs and shed light on the sub-functionalization of G-CSF paralogs in cyprinid fish.
KW - Cell Migration
KW - Granulocyte Colony-Stimulating Factor
KW - Hematopoiesis
KW - Neutrophil
KW - Respiratory Burst
KW - Teleost
UR - http://www.scopus.com/inward/record.url?scp=85062639520&partnerID=8YFLogxK
U2 - 10.3389/fimmu.2019.00255
DO - 10.3389/fimmu.2019.00255
M3 - Article
C2 - 30837998
AN - SCOPUS:85062639520
SN - 1664-3224
VL - 10
JO - Frontiers in Immunology
JF - Frontiers in Immunology
IS - FEB
M1 - 255
ER -