Abstract
Intercalation into 1D transition metal trichalcogenides (TMTs) in which fibers are bonded by a weak van der Waals force can be expected to create various intercalation compounds and develop unique physical properties according to the combination of the host materials and guest ions. However, structural changes via intercalation into 1D TMTs are not as simple as those in 2D transition metal dichalcogenides (TMDs) and are still not understood comprehensively. ZrTe3: a typical compound with a 1D trigonal prismatic structure, belongs to TMTs. Herein, through the Ag introduction to ZrTe3 via solid-state intercalation, a novel crystal phase with a 1D octahedral structure and a quasi-amorphous (QA) phase during the structural transition are discovered; the QA phase is a novel state of matter in which long-range order is lost while retaining 1D order. Based on the Ag concentration, the transport properties are flexibly modulated from superconductivity to semiconductivity. Density functional theory calculations indicate the attraction between Ag ions and the pair diffusion due to their attraction. Furthermore, judging the attraction or repulsion between guest ions predicts whether to induce a QA phase or simple lattice expansion like the intercalation into 2D TMDs.
Original language | English |
---|---|
Article number | 2208702 |
Journal | Advanced Functional Materials |
Volume | 33 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2 Mar 2023 |
Keywords
- 1D materials
- intercalation
- quasi-amorphous phases
- superconductivity
- transition metal trichalcogenides