TY - JOUR
T1 - Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis-induced atherosclerosis
AU - Cai, Yu
AU - Kurita-Ochiai, Tomoko
AU - Hashizume, Tomomi
AU - Yamamoto, Masafumi
PY - 2013/2
Y1 - 2013/2
N2 - The purpose of this study was to determine whether epigallocatechin-3-gallate (EGCG) ameliorates Porphyromonas gingivalis-induced atherosclerosis. EGCG is a polyphenol extract from green tea with health benefits and P. gingivalis is shown here to accelerate atheroma formation in a murine model. Apolipoprotein E knockout mice were administered EGCG or vehicle in drinking water; they were then fed high-fat diets and injected with P. gingivalis three times a week for 3 weeks. Mice were then killed at 15 weeks. Atherosclerotic plaques in the proximal aorta were determined by Oil Red O staining. Atherosclerosis risk factors in serum, liver or aorta were analysed using cytokine antibody arrays, enzyme-linked immunosorbent assay and real-time PCR. Atherosclerotic lesion areas of the aortic sinus caused by P. gingivalis infection decreased in EGCG-treated groups, wherein EGCG reduced the production of C-reactive protein, monocyte chemoattractant protein-1, and oxidized low-density lipoprotein (LDL), and slightly lowered LDL/very LDL cholesterol in P. gingivalis-challenged mice serum. Furthermore, the increase in CCL2, MMP-9, ICAM-1, HSP60, CD44, LOX-1, NOX-4, p22phox and iNOS gene expression levels in the aorta of P. gingivalis-challenged mice were reduced in EGCG-treated mice. However, HO-1 mRNA levels were elevated by EGCG treatment, suggesting that EGCG, as a natural substance, inhibits P. gingivalis-induced atherosclerosis through anti-inflammatory and antioxidative effects.
AB - The purpose of this study was to determine whether epigallocatechin-3-gallate (EGCG) ameliorates Porphyromonas gingivalis-induced atherosclerosis. EGCG is a polyphenol extract from green tea with health benefits and P. gingivalis is shown here to accelerate atheroma formation in a murine model. Apolipoprotein E knockout mice were administered EGCG or vehicle in drinking water; they were then fed high-fat diets and injected with P. gingivalis three times a week for 3 weeks. Mice were then killed at 15 weeks. Atherosclerotic plaques in the proximal aorta were determined by Oil Red O staining. Atherosclerosis risk factors in serum, liver or aorta were analysed using cytokine antibody arrays, enzyme-linked immunosorbent assay and real-time PCR. Atherosclerotic lesion areas of the aortic sinus caused by P. gingivalis infection decreased in EGCG-treated groups, wherein EGCG reduced the production of C-reactive protein, monocyte chemoattractant protein-1, and oxidized low-density lipoprotein (LDL), and slightly lowered LDL/very LDL cholesterol in P. gingivalis-challenged mice serum. Furthermore, the increase in CCL2, MMP-9, ICAM-1, HSP60, CD44, LOX-1, NOX-4, p22phox and iNOS gene expression levels in the aorta of P. gingivalis-challenged mice were reduced in EGCG-treated mice. However, HO-1 mRNA levels were elevated by EGCG treatment, suggesting that EGCG, as a natural substance, inhibits P. gingivalis-induced atherosclerosis through anti-inflammatory and antioxidative effects.
KW - Apolipoprotein E knockout mice
KW - Atherosclerosis
KW - Epigallocatechin-3-gallate
KW - Inflammation
KW - Oxidation
KW - Porphyromonas gingivalis
UR - http://www.scopus.com/inward/record.url?scp=84878160820&partnerID=8YFLogxK
U2 - 10.1111/2049-632X.12001
DO - 10.1111/2049-632X.12001
M3 - Article
C2 - 23620122
AN - SCOPUS:84878160820
SN - 2049-632X
VL - 67
SP - 76
EP - 83
JO - Pathogens and Disease
JF - Pathogens and Disease
IS - 1
ER -