Dopamine modulates neuronal excitability pre- and post-synaptically in the rat subfornical organ

Nobutaka Miyahara, Kentaro Ono, Suzuro Hitomi, Masaki Hirase, Kiyotoshi Inenaga

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

The aims of this study were to investigate the involvement of dopamine (DA) in drinking behaviour related to body fluid balance. All experiments were performed in rats. Water intake induced by intracerebroventricular injection of angiotensin II (ANGII) was suppressed by co-injection of DA in a dose-dependent manner. RT-PCR revealed the presence of mRNAs for all known DA receptors, D 1-D5, in the subfornical organ (SFO), a brain region that plays a key role in regulating drinking behaviour. Extracellular recordings and whole-cell patch-clamp recordings from SFO neurons showed that DA or the D 4 selective agonist PD168077 inhibited spontaneous electrical activity. The D4 antagonist L745870 blocked DA-induced inhibition of spontaneous electrical activity in SFO neurons. Under conditions of synaptic blockade, the inhibitory effects of DA and PD168077 still remained, but the D2/D3 agonist quinpirole and the D1/D 5 agonist SKF38393 had almost no effect on electrical activity. While DA induced excitation in a small number of neurons, these excitatory responses almost disappeared following synaptic blockade. All neurons with firing rates that were suppressed by DA were excited by ANGII. In voltage clamp mode, we found that DA and quinpirole, but not SKF38393, suppressed GABAergic miniature inhibitory post-synaptic currents. These results suggest that DA inhibits neuronal activity in ANGII-sensitive SFO neurons primarily through the postsynaptic D4 receptor subtype. This may be a cause of the suppression of ANGII-induced water intake by DA. In addition, the inhibitory DA responses in SFO neurons may be modulated by presynaptic suppression of GABAergic inhibitory inputs through D2/D3 receptor subtypes.

Original languageEnglish
Pages (from-to)44-52
Number of pages9
JournalBrain Research
Volume1447
DOIs
Publication statusPublished - 4 Apr 2012
Externally publishedYes

Keywords

  • Dopamine
  • Drinking behaviour
  • Subfornical organ

Fingerprint

Dive into the research topics of 'Dopamine modulates neuronal excitability pre- and post-synaptically in the rat subfornical organ'. Together they form a unique fingerprint.

Cite this