Dissecting promoter of InMYB1 gene showing petal-specific expression

Mirai Azuma, Yoshimi Oshima, Shingo Sakamoto, Nobutaka Mitsuda, Masaru Ohme-Takagi, Shungo Otagaki, Shogo Matsumoto, Katsuhiro Shiratake

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

We had previously reported that the InMYB1 promoter, the 1023 bp upstream region of InMYB1, works petal-specifically in various dicot plants by recognizing petal identity at a cellular level. To determine the petal-specific region in the InMYB1 promoter, Arabidopsis plants harboring InMYB1_1023b::GUS (β-glucuronidase), InMYB1_713b::GUS, InMYB1_506b::GUS, InMYB1_403b::GUS, InMYB1_332b::GUS, InMYB1_200b::GUS and InMYB1_140b::GUS were produced and confirmed a shortest region, which has the petal-specific promoter activity by using histochemical GUS assay. Petal-specific GUS staining was not observed in the Arabidopsis plants transformed with InMYB1_200b::GUS and InMYB1_140b::GUS, but observed in transgenic Arabidopsis plants harboring from InMYB1_1023b::GUS to InMYB1_332b::GUS. cDNA sequence of InMYB1 shows that 120 bp upstream region of InMYB1 is 5′ untranslated region, suggesting that the 332-121 bp upstream region of InMYB1 contains an important element for petal-specific gene expression. In the Arabidopsis harboring the InMYB1_332-121b×3_TATA_Ω::GUS, petal-specific GUS staining was observed and the staining was stronger than in the Arabidopsis harboring InMYB1_1023b::GUS. This result shows that the 332-121 bp region is enough and essential for the petal specificity and the InMYB1_332-121b×3_TATA_Ω could be used for the molecular breeding of floricultural crops.

Original languageEnglish
Pages (from-to)243-248
Number of pages6
JournalPlant Biotechnology
Volume35
Issue number3
DOIs
Publication statusPublished - 2018

Keywords

  • Cis-element
  • InMYB1 promoter
  • Petal-specific gene expression

Fingerprint

Dive into the research topics of 'Dissecting promoter of InMYB1 gene showing petal-specific expression'. Together they form a unique fingerprint.

Cite this