Detection of gastritis by a deep convolutional neural network from double-contrast upper gastrointestinal barium X-ray radiography

Ren Togo, Nobutake Yamamichi, Katsuhiro Mabe, Yu Takahashi, Chihiro Takeuchi, Mototsugu Kato, Naoya Sakamoto, Kenta Ishihara, Takahiro Ogawa, Miki Haseyama

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Background: Deep learning has become a new trend of image recognition tasks in the field of medicine. We developed an automated gastritis detection system using double-contrast upper gastrointestinal barium X-ray radiography. Methods: A total of 6520 gastric X-ray images obtained from 815 subjects were analyzed. We designed a deep convolutional neural network (DCNN)-based gastritis detection scheme and evaluated the effectiveness of our method. The detection performance of our method was compared with that of ABC (D) stratification. Results: Sensitivity, specificity, and harmonic mean of sensitivity and specificity of our method were 0.962, 0.983, and 0.972, respectively, and those of ABC (D) stratification were 0.925, 0.998, and 0.960, respectively. Although there were 18 false negative cases in ABC (D) stratification, 14 of those 18 cases were correctly classified into the positive group by our method. Conclusions: Deep learning techniques may be effective for evaluation of gastritis/non-gastritis. Collaborative use of DCNN-based gastritis detection systems and ABC (D) stratification will provide more reliable gastric cancer risk information.

Original languageEnglish
Pages (from-to)321-329
Number of pages9
JournalJournal of Gastroenterology
Volume54
Issue number4
DOIs
Publication statusPublished - 1 Apr 2019
Externally publishedYes

Keywords

  • Artificial intelligence
  • Deep convolutional neural network
  • Double-contrast upper gastrointestinal barium X-ray radiography
  • Gastritis

Fingerprint

Dive into the research topics of 'Detection of gastritis by a deep convolutional neural network from double-contrast upper gastrointestinal barium X-ray radiography'. Together they form a unique fingerprint.

Cite this