Continuous compressive force induces differentiation of osteoclasts with high levels of inorganic dissolution

Rieko Matsuike, Kumiko Nakai, Hideki Tanaka, Manami Ozaki, Mai Kanda, Maki Nagasaki, Chika Shibata, Kotoe Mayahara, Natsuko Tanabe, Ryosuke Koshi, Akira Nakajima, Takayuki Kawato, Masao Maeno, Noriyoshi Shimizu, Mitsuru Motoyoshi

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Background: Osteoclast precursor cells are constitutively differentiated into mature osteoclasts on bone tissues. We previously reported that the continuous stimulation of RAW264.7 precursor cells with compressive force induces the formation of multinucleated giant cells via receptor activator of nuclear factor kB (RANK)-RANK ligand (RANKL) signaling. Here, we examined the bone resorptive function of multinucleated osteoclasts induced by continuous compressive force. Material/Methods: Cells were continuously stimulated with 0.3, 0.6, and 1.1 g/cm2 compressive force created by increasing the amount of the culture solution in the presence of RANKL. Actin ring organization was evaluated by fluorescence microscopy. mRNA expression of genes encoding osteoclastic bone resorption-related enzymes was examined by quantitative real-time reverse transcription-polymerase chain reaction. Mineral resorption was evaluated using calcium phosphate-coated plates. Results: Multinucleated osteoclast-like cells with actin rings were observed for all three magnitudes of compressive force, and the area of actin rings increased as a function of the applied force. Carbonic anhydrase II expression as well as calcium elution from the calcium phosphate plate was markedly higher after stimulation with 0.6 and 1.1 g/cm2 force than 0.3 g/cm2. Matrix metalloproteinase-9 expression decreased and cathepsin K expression increased slightly by the continuous application of compressive force. Conclusions: Our study demonstrated that multinucleated osteoclast-like cells induced by the stimulation of RAW264.7 cells with continuous compressive force exhibit high dissolution of the inorganic phase of bone by upregulating carbonic anhydrase II expression and actin ring formation. These findings improve our understanding of the role of mechanical load in bone remodeling.

Original languageEnglish
Pages (from-to)3902-3909
Number of pages8
JournalMedical Science Monitor
Volume25
DOIs
Publication statusPublished - 2019

Keywords

  • Bone resorption
  • Carbonic anhydrase II
  • Cathepsin K
  • Matrix metalloproteinase 9
  • Osteoclasts
  • RANK ligand

Fingerprint

Dive into the research topics of 'Continuous compressive force induces differentiation of osteoclasts with high levels of inorganic dissolution'. Together they form a unique fingerprint.

Cite this