Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

Masahiro Yamada, Takeshi Ueno, Naoki Tsukimura, Takayuki Ikeda, Kaori Nakagawa, Norio Hori, Takeo Suzuki, Takahiro Ogawa

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

The mechanism by which hydroxyapatite (HA)-coated titanium promotes bone-implant integration is largely unknown. Furthermore, refining the fabrication of nanostructured HA to the level applicable to the mass production process for titanium implants is challenging. This study reports successful creation of nanopolymorphic crystalline HA on microroughened titanium surfaces using a combination of flame spray and low-temperature calcination and tests its biological capability to enhance bone-implant integration. Sandblasted microroughened titanium implants and sandblasted + HA-coated titanium implants were subjected to biomechanical and histomorphometric analyses in a rat model. The HA was 55% crystallized and consisted of nanoscale needle-like architectures developed in various diameters, lengths, and orientations, which resulted in a 70% increase in surface area compared to noncoated microroughened surfaces. The HA was free from impurity contaminants, with a calcium/phosphorus ratio of 1.66 being equivalent to that of stoichiometric HA. As compared to microroughened implants, HA-coated implants increased the strength of bone-implant integration consistently at both early and late stages of healing. HA-coated implants showed an increased percentage of bone-implant contact and bone volume within 50 μm proximity of the implant surface, as well as a remarkably reduced percentage of soft tissue intervention between bone and the implant surface. In contrast, bone volume outside the 50 μm border was lower around HA-coated implants. Thus, this study demonstrated that the addition of pure nanopolymorphic crystalline HA to microroughened titanium not only accelerates but also enhances the level of bone-implant integration and identified the specific tissue morphogenesis parameters modulated by HA coating. In particular, the nanocrystalline HA was proven to be drastic in increasing osteoconductivity and inhibiting soft tissue infiltration, but the effect was limited to the immediate microenvironment surrounding the implant. 2012 Cárdenas et al, publisher and licensee Dove Medical Press Ltd.

Original languageEnglish
Pages (from-to)859-873
Number of pages15
JournalInternational Journal of Nanomedicine
Volume7
DOIs
Publication statusPublished - 2012
Externally publishedYes

Keywords

  • Bone-implant integration
  • Calcium phosphate
  • Dental and orthopedic implant
  • HA
  • Nanotechnology
  • Osseointegration

Fingerprint

Dive into the research topics of 'Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants'. Together they form a unique fingerprint.

Cite this