Abstract
The effects of mechanical retentive devices and various surface treatments on the shear bond strength between a veneering composite resin and zirconia was investigated. Zirconia disks were classified into three surface-treatment groups: airborne-particle abrasion, overglazing, and overglazing with white alumina particles of three different grain sizes (50, 70, and 105 μm) attached onto zirconia disks (ZR-50, ZR-70, and ZR-105, respectively). They were further divided into four groups (n=44): unprimed, Clearfil Porcelain Bond Activator (CA), Clearfil Photo Bond (CB), and CA+CB. An indirect composite resin was bonded to zirconia specimens. Shear bond strengths were measured. For the ZR-70 and ZR-105 groups, the CB and CA+CB specimens exhibited higher bond strengths than the other two specimens after thermocycling. The ZR-70 and ZR-105 groups achieved micromechanical interlocking, and priming with a phosphate monomer (MDP) yielded stable bond strengths between the composite resin and zirconia with alumina particles attached as retentive devices.
Original language | English |
---|---|
Pages (from-to) | 117-125 |
Number of pages | 9 |
Journal | Dental Materials Journal |
Volume | 41 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2022 |
Keywords
- Bond strength
- Composite resin
- Glaze
- Mechanical device
- Zirconia